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Abstract. We study, in detail, the s t r u m  of the stochastic layer of a resonantly kicked 
oscillator. For the resonantly kicked case the stochastic layer has a crystalline or quasicrystalline 
structure depending on the parameter wg? = 2Rn/m, where r is thc kicking period, 2rrfwg the 
natural period of the oscillator and n and m are integers. For this resonant case we obtain the 
underlying orbit structure and the exact mechanism responsible for the diffusion in phase space 
is established. The diffusion of orbits in the stochastic layer is eiamined and a general universal 
form for the diffusion coefficient obiained. 

, 

1. Introduction 

In dissipative systems one can completely characterize chaos from a knowledge of the 
unstable periodic orbits [1,21. In both classical and quantum chaos knowledge of the orbit 
structure is fundamental and has proved extremely useful in untangling and quantifying 
the dynamical properties of the system [1,3,4]. In the problem we treat below we show 
that knowledge of the orbit structure in phase space enables one to characterize chaos in 
the forced oscillator and obtain a detailed understanding of the mechanism of diffusion in 
the stochastic layer of the system. Such detailed knowledge enables one to gain insight 
into quantum chaos and to understand in a quantitative way what is meant by diffusion in 
quantum chaos problems. 

The model we study below is a fundamental one, both in classical and quantum physics 
[5,6]. The nonlinearly kicked harmonic oscillator can be related directly back to the kicked 
rotator [7,8] by letting the natural period of oscillation of the oscillator tend to zero. We 
show that for a wide range of parameters, much larger than one would expect, the results 
obtained for the kicked rotator can be applied to this system with little or no modification 
emphasizing the similarity and the connection between the two systems. In recent years 
a related model, which was originally introduced as a first-order approximation to the 
fourth-order Poincar6 map of the kicked harmonic oscillator when the kick strength is very 
much less than one, has undergone extensive analysis [9,10]. This kicked Harper model has 
recently been shown by Dana to have an exact relationship to the kicked harmonic oscillator 
for general even potentials (see [IO, 1 4 ) .  The importance of the kicked Harper model is that 
it has been shown to exhibit quantum suppression of diffusion on the stochastic webs under 
specific circumstances [lo]. Although these conditions for suppression are quite specific, 
the importance of this suppression and the relevance of this system to the kicked oscillator is 
currently a very active area of research both in the classical and quantum limit [IO, 12-14]. 

In the problem that we study below, under the condition of resonant kicking, the 
stochastic layer has a crystalline or quasicrystalline structure depending on the p m e t e r  
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wgt = ~ k n / m ,  where t is the kicking period, ;?ir/wo the natural period of the oscillator 
and n and m are integers. It has been postulated by Berman [6] that with the presence 
of an extra time scale (IX In@-’)) in the quantum regime, the quantum analogue of the 
crystalline structure in phase space might allow for the possibility of the non-suppression of 
chaos, that is the delocalization of the quantum wavefunctions, and hence the nonlinearly 
kicked oscillator model would be a simple example where there would be quantum chaos. 
It has become necessary to obtain a more detailed and quantitative understanding of the 
mechanism of diffusion in both the classical and quantum limits. In thispaper we report on 
the detailed analysis of the mechanism of diffusion in the classical limit for the resonantly 
kicked case. The quantum version of the model is currently under active study [6,14]. 

The main thrust of this paper is to use the orbit structure of the phase space of the 
nonlinearly resonantly kicked harmonic oscillator to analyse the dynamical properties of 
this system classically. We examine in detail the case when 00s = 2nn/m. Using the 
appropriate return map, we can show the existence of an infinite @id of hyperbolic points 
over the whole ZD plane of the phase space and we show how some orbits can diffuse over 
the whole phase space as a consequence. We also present a form of the driving term which 
allows explicit prediction of orbits on or near the stochastic layer boundary. The layer itself 
is analysed with its width measured and compared to theoretical predictions [5,15]. The 
diffusion of orbits in the stochastic layer is examined and a general form for the diffusion 
coefficient given which is independent of the periodicity of the system’s phase space. To 
our knowledge this is the fist detailed study of the orbit structure and resonant tori breakup 
in the resonantly kicked case. 

M V Daly and D M Heffernan 

2. The model 

The model we have chosen to study in detail is a quantum harmonic oscillator in the 
presence of a nonlinear kicking potential V ( p ,  q) whose time dependence is governed by 
the periodic delta function [6] 

where 

V ( P ,  q) = PQ cos&). (2) 

This model and related driven systems are fundamental to a wide range of disciplines in 
classical and quantum physics [16-221. PQ is the parameter which governs the strength 
of kicking and hence the richness of the system’s dynamics (that is the degree of non- 
integrability). This choice preserves the space inversion parity P and time reversal T of the 
original Hamiltonian H. The addition of the potential term V ( p ,  q) means that the system 
is non-integrable and possesses highly complex dynamics. 

The mapping obtained from the Hamiltonian above is 

x(n + 1) = x(n)  cos(oor) + y (n)  sin(oos) + /.Lc~ sin(ZKx(n)) sin(wgr) 
y(n + 1) = y(n) COS(WOS) - x ( n )  sin(oo+) + L L ~  sin(ZKx(n)) cos(o07) 

(3) 
(4) 

where 

K = €/CO @ and pd =PpC6o/fi 
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with E = k J w  and €0 = k o J m 3  where 60 is normalized to one. This choice 
of parameters and scaling is useful for a number of reasons. It enable us to make a detailed 
comparison between the classical and quantum regimes. Note that the three parameters 
K, p and f ie l  are independent of ii. There are two important dynamical parameters, ficl 

and p, and the parameter K which enables us to change the phase space periodicity of the 
system. Thii allows very small structures in the stochastic layer to be analysed without 
being hampered by the numerical precision of the computer used. For exampIe, if K is 
fixed at 0.5 then the periodicity of the system is 2z.  However, if we change K to 0.001 
then the system’s periodicity becomes lOOOx, increasing the resolution of the phase space 
for analysis purposes. By making K small it is possible to magnify very small structures. 

In what follows we will examine the dynamics of the system in detail, particularly in 
the resonant l i t  for the special case when the ratio q/q is +, where 01 = 2z/ r .  As the 
dynamics are universal in the resonant case, this does not limit our conclusions. For the 
remainder of this paper K is kept at a constant value of 0.1 unless otherwise indicated. 

3. Resonant kicking-analysis of the phase space orbit structure 

The symmetry in the system’s phase space depends solely on the value of the parameter 
p. The dramatic effect that the parameter p has on the phase space strncture is illustrated 
in figures 1 and 2. In figure 1 we show the stochastic layer for pCl = 6.5, K = 0.1 and 
p = z/2. The four-fold symmewy, determined by oo/ol being set at $, is clearly visible. 
In figure 2 the phase space structure is shown for the parameters = 6.5, K = 0.1 and 
p = ( 1  + fi)n/Z. This value of p is such that the frequency ratio is now incommensurate. 
In this non-resonant case there is no obvious long range symmetry. For the rest of the paper 
p is fixed at the resonant value of x/2 and the phase space symmehy is four fold We 
use the fourth retum map (see the appendix) to locate the period-four fixed points of the 
system as these have a periodicity corresponding exactly with the phase space symmetry 
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Figure 1. The stochastic layer at pd = 6.5, K = 0.1 and at reSOnance (i.e. p = n/2). 
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Figure 2. The phase space for LIS~  = 6.5. K = 0.1 and p = (1 + &r/2. The stochastic layer 
in this wse has none of the web-like smcNre as for that at p = x / z  Some of the invariant 
orbits near the origin are shown for complereness. 

for j3 = n/Z. By direct calculation with this return map we find that all fixed points of 
period-four satisfy the condition 

x = 5 m n  y = 5 n n  n , m e Z  (5) 

As m and n can take on any integer value, the period-four points exist on a uniform grid 
which extends over the whole ZD plane of the phase space. The existence of this grid has far 
reaching consequences for the transport properties of certain phase space orbits. When m+n 
is an odd integer the x ,  y positions given in (5) correspond to a hyperbolic fixed point whose 
unstable and stable directions we denote by I+ and I-, respectively. Explicit calculation 
of the A’s for two adjacent hyperbolic fixed points A and B ,  with A = (Smrr, 5nn) and 
B = (5(m+ l ) n ,  5(n+ l)rr), show that the unstable direction of A coincides with the stable 
direction of B and vice versa (see the appendix). We find that orbits in the vicinity of the 
unstable manifold of any hyperbolic period-four fixed point, say P1, can be shoved away 
to one of two neighbours, PZ or PZ’, because their stable manifolds are coincident with the 
unstable manifolds of P1. This is shown in figure 3. Once in the vicinity of P2,  or P2‘, 
the orbits are pushed away along their unstable manifolds to one of two of their neighbours 
and so the process continues until an orbit has visited all period-four hyperbolic fixed points 
in the ID plane of the phase space. Therefore some orbits can spread (diffuse) out over the 
whole x-y plane and it is these orbits that form the stochastic layer present in the system. 
To examine the orbit structure in more detail we recast the system Hamiltonian in terms of 
the standard action-angle variables, J and B. The new form for the system Hamiltonian Hr 
is 



Chaos in a resonantly kicked oscillaror 2519 

40 

20 

-20 

-40 
-40 -20 0 20 40 

x 
Figure 3. The period-four hyperbolic hxed pints' manifold mcture in the phase space for 
pCl = 6.5, K = 0. I and f l  = f. Each hyperbolic point lies at each intersection of the manifolds 
with the m w s  indicating the direction of wave1 (pointing from means unstable and pointing 
to means stable). This s m m r e  is repetitive and covets the complete plane. The three labelled 
points, PI. P 2  and PZ', are those referred to in he text. The stochastic layer is also included 
for comparison. 

where 

It consists of an integrable part HO and a non-integrable part HI. The system is certainly 
non-integrable for large values of pel, but, for the resonant case, we can ask the fundamental 
question: to what extent is the system non-integrable for small non-zero values of pCl and 
how does this non-integrability affect the invariant orbits in the phase space? 

For small  values of the parameter pLsl the majority of orbits are unaffected by the kicking 
term. Detailed observations of the phase space, about the hyperbolic fixed point at (0,5a), 
show that the stochastic layer is very small and only those orbits with large H l ( J ,  6 )  have 
any discemible distortion. Therefore the level of non-integrability is very small and in 
most cases negligible. However, the term HI(J, e) is not constant for fixed values of pd, 
K and p and therefore those orbits with large & ( J ,  e )  can be sufficiently non-integrable 
to be distorted or destroyed altogether. This does, in fact, arise in the vicinity of the 
hyperbolic fixed points of period four and their corresponding manifolds. For sufficiently 
small pertnrbations of the integrable Hamiltonian the invariant orbits remain if the orbits 
have sufficiently incommensurate frequencies wi. Those with commensurate frequencies or 
frequencies nearly commensurate do not remain unaffected but are distorted to a lesser or 
greater extent with some even being destroyed. The non-constant property of the H l ( J ,  6') 
term can negate, or even reverse, the effect of an increasing pLcl if the latter parameter is 
sufficiently small. In this case the non-integrable term becomes more of a perturbation and 
this seems to indicate that for sufficiently small H l ( J ,  e), the effect on the Hamiltonian is 
similar to that of small pel. 
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We will now examine the case when pc1 is finite and beyond the perturbation realm. 
One would expect that if Hl(J ,  e)  was of a sufficient size to be distorted when pCl was 
small, then as pd is increased the distoxtion would increase and orbital (ton in higher 
dimensions) breakup would arise through an overlapping of higher resonance separatrices. 
This is indeed the case from observations of the phase space evolution. It should be noted 
that if Hl(J.8)  is small enough to offset the increasing pLCl then the orbits would remain 
essentially undistorted as can be seen around the elliptic fixed point at the origin. Hence 
the larger the H l ( J ,  0) for any pC1 the greater the distortion and the sooner the breakup of 
the orbits. We find that the larger Hl(J, 0) the more terms we need in the series expansion 
of the cosine term to accurately describe the behaviour. Therefore, more terms allow for 
higher-order periodic points and hence an earlier breakup of the orbits than for orbits with 
less terms and a smaller HI  (J, 8) term. 

What we have seen numerically above can also be seen analytically by taking the kicking 
term defined in (1) and (2). substituting for q with J and 6 and explicitly expanding out 
the kicking term to obtain 

where WO has been replaced by ro1, where r = W O / W I .  The above can be expressed in the 
more readable form 

with the functions f , ( J ,  8 . w )  and g,,&ol,r) defined to be ~ k ' J / M o l ) ~ i n ~ ( e ) / ( 2 m ) !  
and 8(t - n(2r t /o1) ) / rm,  respectively. 

To analyse the behaviour of this system we need to consider the relationship between 
and 01. Remember that @ = a / 2 ,  that is T = a. We have, in the function g,,(wl, r ) .  

a way of describing the effect the relationship between WO and 01 has on the existence 
of resonances in the complete system. It is evident from (7a) and (7b) that not only is 
the cosine term sampled by the delta function at a frequency w1 but also that this term 
has an infinite set of intrinsic frequencies, WO"(- r"m;"), and that the ratio between these 
frequencies and 01 allows the various resonances to exist. We can use these resonances 
to predict the periodic points in the system's phase space. Thus, depending on the values 
chosen for m ,  the resonances allowed can be various and not just multiples of four. It is 
these resonances that cause the breakup of orbits in the phase space because only those orbits 
which are sufficiently incommensurate will survive an increase in the non-integrability of 
the system. 

How sujyicient is sujyicient? This condition of sufficiency may become more apparent 
by examining the resonances for some low values of m. Table 1 shows how for a given 
value of m, the number of expected resonances is dependent on the number of factors of 
rm. Furthermore, the statement "aybe all factors which almost divide evenly into 256' 
used in table 1 implies that while there are multiples of 4 which do divide into its higher 
powers evenly, there can exist periodic orbits which have a periodicity close enough to 
a divisor of 256, or any power of 4,, with a small remainder. These constitute the 
quasi-commensurate orbits which accelerate the destruction of orbits with small f l  whose 
resonances otherwise would be of insufficient number to breakup the orbits at the same 
value of pel. The periodic points actually observed in numerical simulations to date have 
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Table 1. The fin1 few terms in the expansion of the driving term in (7) showing what resonances 
would be expected to be present. Those resonances shown in italics are those which nearly divide 
into the numkr given by P. 

0 1-1 0 1  
1 I 4  and 1-1 4 
2 l-16,1-8,14,1-1 16 

3 1-64,1-32.1-16.1-8,14,I-1 64 

4 All multiple of 4 up to 256 256 

mybe n 1-5 a d  I-3 

mybe 1-21,I-13.1-12.1-9,1-7~1-5,I-3 

mybe aU factors which olmost divide into 
256 with small remainders 

been 1,3,4,5,6,7,8, 12, 16,21,24,32,48 and 72. The inherent difficulty of locating, 
numerically, fixed points of a specific periodicity is well known especially if the points 
sought have small Lyapunov exponents as this results in slow convergence to the points 
themselves [l]. Therefore the list presented above is as complete as permitted by the limit 
on computing time and by the resolution of the search grid used to locate the points. 

The non-integrable cosine term, H I ,  in the Hamiltonian, can only be expressed by its 
first few series terms when fisin(6’) is small. As the di can be considered, in the 
undriven oscillator, to be analogous to the radii of orbits in the driven case, for those orbits 
near the origin, we can make a similar identification. As the phase space has a definite four- 
fold symmetry then all invariant cells centred about a period-Four elliptic point satisfying 
the condition in (5 )  can he transformed to the origin. Therefore we can presume that the 
contribution from the non-integrable term HI about each of these elliptic fixed points is 
small. So n s i n ( 8 )  tends to zero in the vicinity of the elliptic points of period four. The 
number of possible resonances in this region is small because of the small number of terms, 
in the cosine expansion of H I ,  needed to adequately describe the system’s behaviour (see 
table 1). Thus the possibility of orbital breakup is small for small values of the parameter 
p d ,  but becomes increasingly more probable as the kick strength pCl is increased. The 
system is essentially integrable in these regions for small pel. 

However, the further out we go from the elliptic fixed points at each invariant cell’s 
centre then the more terms we require to satisfactorily describe the system’s behaviour and 
hence the greater the number of possible resonances. There is a constant multiplier K in the 
H term which takes on the value 0.1 in the case being considered here. As a consequence 
of this the x ’s  and y’s have prominent fixed points every 537 (as in (5)) with hyperbolic 
fixed points of period four at specific multiples of 537 (see the appendix). The regions 
of the orbits nearest these hyperbolic points have the largest non-integrability and hence 
require the most terms in the cosine expansion of HI. The most terms implies the greatest 
resonance overlap and for large p , ~  their contributions can be very significant. 

So the breakup of the orbits occur in the most non-integrable regions (that is regions 
where K d s i n ( 8 )  is not small). For small pCl the driving term (regardless of how many 
terms are in the cosine factor) is small and the system follows the scenario of commensurate 
orbital breakdown as described by the Kolmogorov-Amold-Moser (KAM) theorem. As 
pcj is increased the regions following this scenario contract about the elliptic fixed points 
described earlier. The outer regions for these large pCl have many overlapping separatrices 
from each of the boundaries of the resonances. These overlapping separatrices breakup 
and form stochastic regions around the unbroken, albeit distorted, orbits. The width of the 
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Figure 4. An eolargemeni of the phase space near the hyperbolic fixed point a1 (0,5n) for 
pCl = 6.5, K = 0.1 and p = 7112. me position of the period-four hyperbolic fixed point 
is highlighted by an opaque square while the positions of the period 24 and period 16 are 
highlighted wilh opaque triangles and diamonds, respectively. 

stochastic region increases with increasing pd due to the contraction of the KAM regions 
about the elliptic fixed points. 

We should expect even for very small pCl the existence of a stochastic region around 
the hyperbolic points as these regions are the most non-integrable for any value of p,~. As 
these regions contain the greatest number of possible resonances (due to the large J value) 
it follows that s epa ra~x  breakup into stochastic layers is very probable even at small pd 
values. The width of such a layer would be extremely thin and consequently would be very 
hard to locate numerically as the boundary would be quite sharp requiring high numerical 
precision. The way in which an increasing number of periodic points cause the breakup 
of the KAM orbits is clearly shown in figure 4, the phase space portrait for the mapping 
at pCl = 6.5 about the hyperbolic fixed point at [0, Sn]. It shows separatrices due to the 
presence of periodic points of increasing order as expected. 

4. Width of stochastic layer 

We now undertake a detailed examination of the variation of the width of the stochastic layer 
as a function of the kick parameter, pEl. Generally it is accepted that for small values of 
the driving parameter the width increases in an exponential manner [15,16,5]. To measure 
this width, a program was witten which sampled points on the main x = 0 axis through 
the hyperbolic fixed point (0,537) about which the layer exists. The width variation, for 
pcl increasing from 0.1-3.0 inclusively, is shown in figure 5. The general trend seem to 
indicate an exponential increase with the data from the simulation fitting an exponential 
curve of the form 
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Figure S. A graph of the normalized stochastic layer width against kick strength, ki, for 
K = 0.1 and ,6 = xJZ. The asterisks denotes the measured values while the full curve 
(diamonds) denotes the fitted curve. The agreement is good but for values of lrct > 3 dips of 
increasing magnitude occur. 

This form agrees exactly with that predicted analytically by Chemikov et a1 
[16,17,18,5]. (Note that the 1/J in the argument of the exponent arises from our explicit 
inclusion of K in our definition of pEl in (3) and (4).) 

For values of pc, greater than 3.4, dips occur in the curve probably due to the presence 
of the periodic islands growing about high-order periodic points on the boundary where 
orbital breakup has occurred due to resonance overlap. These islands are evident only at 
values of pCl greater than 3.0 and are considered to be the cause of the dips. The way in 
which a dip occurs is as follows: as the line along which the initial points for each set of 
iterations passes from the bounded orbital region to the stochastic region, it may encounter 
separatrices and periodic islands in its way. The separatrices may initially be bounded and 
hence non-stochastic hut at some value pCl become stochastic giving rise to a jump in the 
width curve. However, the islands may also increase in size pinching these regions and 
causing a dip with respect to the previous value if the p r o p m  takes initial points that skip 
this region. The only way to measure the layer for the higher values is to plot the phase 
space, enlarge the boundary region and manually measure the region's width. 

In the stochastic layer nearby points separate exponentially and have a positive Lyapunov 
exponent. This can be traced back to the manifolds for the period-four hyperbolic fixed 
points (see figure 3) along which orbits can diffuse over the whole phase space. Furthermore, 
depending on how near to, or on which side of, an unstable manifold an orbit is, determines 
on which unstable manifold it moves along at the next period-four hyperbolic point (as 
discussed previously). Thus nearby orbits can separate exponentially along this manifold 
structure. We have found that the calculated positive Lyapunov exponent (for a specific 
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orbit in the stochastic layer) versus pcl follows a weighted average of the eigenvalues of 
the hyperbolic fixed points the orbits visits. The weighting depends on which point is 
visited and on which unstable manifold it leaves. For large pCl the complexity of the layer 
and the proliferation of higher-order hyperbolic fixed points in this layer (brought about 
by invariant orbit breakup by overlapping resonances) brings about a variance in the above 
relationship between the Lyapunov exponent and the eigenvalues of the hyperbolic points. 
This variance is put down to the increased number of unstable manifolds from the higher- 
order hyperbolic fixed points bringing about a more complex motion in the layer than before. 
To our knowledge most of the analytic approaches to date have not taken into account these 
complexities. 

M V Duly and D M Heffernan 

5. Diffusion coefficient 

We have previously mentioned how the orbits in the stochastic layer have a positive 
Lyapunov exponent so it is natural to investigate how the energy in this layer evolves 
in time. To accomplish this we calculate the mean energy for an ensemble of points in the 
stochastic layer. The results showed us that the growth in energy increases linearly with 
increasing n (n being the iteration counter and hence time) and so can be written as 

En(pc1. = B ( f i d n  = W d r .  (9) 

The dependence of this B parameter on the kick strength was itself examined to determine 
the dependence on pCl unambiguously. It also was found to have a dependence close to 
that of p:] with superimposed undulations. The dependence of the energy En on pCl and n 
can be crudely approximated by 

Care was taken in the above calculation to avoid using periodic points or quasi-periodic 
points as these points' non-diffuse behaviour would affect the result. These points were 
numerically filtered out. Having established the relationship between the mean energy in 
the layer and time, we can now use this result to determine how the diffusion coefficient 
DCl varies as a function of the kick strength, pel. 

The diffusion coefficient for a particular value of pCl was measured by calculating the 
slope of the energy versus time graph, which from (9) is known to be linear. To alleviate 
problems associated with individual orbits and not the global nature of the system a set 
of 60000 initial points were taken in the stochastic region close to one of the hyperbolic 
period-four fixed points. All points were tested for quasi-periodicity and iterated for 20000 
time steps. A graph of the numerical (simulated) results for the diffusion coefficient at 
K = 0.75 is shown in figure 6 with the theoretical prediction (equation (11)) shown for 
comparison: 

D d ( f i d  = it2&' 11 - 2J2(1/lcd - Jz(t/l,)ll (11) 

where t = Ko/K  and KO = 0.5. Note that when K = 0.5, D,! has the same universal form 
as that of the ldcked rotator [10,25]. The expression for Dcl in (11) was obtained using an 
approach similar to Rechester and White [25] in their study of the Chirikov-Taylor system 
with the only difference being our inclusion of the parameter to account for our variable 
periodicity brought about by K. The behaviour of Dcl follows (11) over a large range of 
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Figure 6. A graph of the diffusion coefficient, Dd, 
versus the kick suength. L L ~ .  for K = 0.75. .The 
asterisks,reprerent the measured values while the full 
m e  represents (11). The agreement is extmnely 
good over a large range of the kick strength 

pGl before tending to a p z  dependence as pLcl + CO. This asymptotic limit was predicted by 
Chirikov for the kicked rotator [26]. The increased contribution from structure in the phase 
space for small kicks can be more easily examined using (1 1) than using the more usual 
form for DCl because K can be used to magnify the phase space and hence to analyse small 
local effects by changing the phase space periodicity. Though K is not a true parameter (i.e. 
it has no physical analoguei t  just changes the principle length scale of the problem) it does 
allow easier analysis of fine detail using numbers of a manageable magnitude without the 
numerical problems described earlier. The principle form of the deviation are spikes on the 
oscillations in the diffusion coefficient Dcl(pcl). A detailed analytical study of these spikes 
is undertaken by Ishizaki et al for the kicked rotator [24]. By considering the influence of 
accelerator modes on the motion of orbits they show that Dcl diverges to infinity when the 
kick strength is close to integer multiples of the system’s periodicity. 

6. Conclusions 

We have studied, in detail, the dynamics of the nonlinearly kicked oscillator at resonance. 
We have found for the kicked oscillator, at resonance, that the existence of periodic orbits 
in or around the stochastic layer influences the breakup of the invariant orbits as would be 
expected from the E;AM theorem. Our analysis allows us to predict which resonances and 
hence which periodic orbits should be present in the system’s phase space by means of a 
function obtained via a polynomial expansion of the kicking term. The correlation between 
prediction and numerical results was found to be very good despite the practical problems 
in numerically locating complete sets of periodic orbits. 

We also studied the basic mechanism for hmsport in the stochastic layer, namely the 
diffusing of orbits along the (stable and unstable) manifolds of the period-four hyperbolic 
points whose separahx net is the layer itself for infinitesimal kicking. A measure of the 
positive Lyapunov exponent for any diffuse orbit was found to match a weightea average 
of the magnitudes of the unstable manifolds of the orbits visited. Deviations at high kick 
values were found to result from a prolieration of other periodic orbits in the layer and 
gave a more complicated motion within the layer itself. 
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The detailed study of the evolution of the stochastic layer as the kick strength is 
increased is of fundamental importance as it enables us to see the effect of increasing non- 
integrability on the system at large. The most striking change in the layer is its variation 
in width with kick strength. which we studied in detail and compared to that predicted by 
perturbative analytical arguments [5]. We found that the width of the layer as a function 
of the kicking strength follows an exponential variation of the form uexp(-U), where 
U = l/(kickstrength). This is the form predicted by Chemikov er ai [5] for kick strengths 
<< 1. We find that this result is true for a range of kick strengths considerably in excess 
of the theoretical prediction. This validity is surprising when one considers the increased 
complexity of the layer itself and the overall increase in structure at the layer boundary with 
increased kicking. 

We have also measured the energy of the diffuse orbits within the layer as functions of 
both pCl and time, and used these relationships to obtain the diffusion coefficient, D,l, as a 
function of pel. The diffusion coefficient was subsequently measured over a range of the 
kick parameter and was shown to be oscillatory. The form of these oscillations was shown 
to be universal and, at resonance, to have the same form as that of the kicked rotator, but 
was found to extend over a larger range of pel than the corresponding analytical theory 
for the kicked rotator. Indeed, the lower asymptotic l i t  was found to be identical to that 
found by Lichtenberg and Wood who constructed an approximate theory of diffusion on the 
stochastic web which is valid in the small pCl region 1271. 
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Appendix 

In this appendix we illustrate how the fourth return map of the system allows us to predict 
the behaviour of all the period-four fixed points for a tixed set of the parameters K, ,3 and 
pel. The use of return maps is one of the standard methods of quantitatively examining and 
illustrating the symmetry of the system at a particular resonance value of p .  This method 
is restricted, however, in that only positive integer ratios of 00 to W I  can have comparable 
retum maps. Therefore if the ratio between 00 and 01 is n then the nth retum map is 
required which exists only if n is a positive integer. p ,  in most of the analysis to follow, is 
fixed at ?T / Z  requiring us to obtain the fourth return map. 

The fourth return map is that version of the classical mapping which relates y(n + 1) 
to y(n - 3), not y(n), and similarly x(n + 1) to x(n - 3). Thus we can relate every fourth 
point explicitly. The fourth return map (denoted 4RM) is expressed thus 

x(n + 1) = x(n - 3) - pclsin[2Ky(n - 3) + 2Kpdsin(2Kx(n - 3))] 
- pci sin[2Ky(n - 3) + 2Kpd sin[2Kx(n - 3)] + 2KpC1 sin[2Kx(n - 3) 
- 2KpC1 sin[ZKy(n --3) + 2KpCl sin[ZKx(n - 3)lIl) (AI) 

+ pcl sin[ZKx(n - 3) - 2KpLc1 sin[ZKy(n - 3) + 2KpC1 sin[ZKx(n - 3)111. 
y (n f1 )  = y ( n - 3 ) + p d s i n [ Z K x ( n - 3 ) ]  

(-42) 
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The period-four fixed points are going to be those points satisfying theidentities: 

x(n  + 1) = x(n - 3) y(n + 1) = y(n - 3) .  (A3) 

So the solutions of (A3) are the fixed points of period four, two or one since any factor of 
four is a solution of the identity above. For a solution of the form x ( n  + 1) = x(n  - 3) etc 
to occur all terms after the first on the right-hand side of (Al) and (A2) must go to zero. 
This means that all the sine arguments must all go to zero and so the period-four fixed 
points must satisfy 

2Kx(n + 1) = 2Kx(n - 3) = 2Kx = m n  
2Ky(n + 1) = 2Ky(n - 3) = 2 K y  = nn 

As K has been chosen to be 0.1 for most of the analysis then it follows that the period-four 
fixed points are given by 

x = 5 m a  y = 5 n n  (A@ 

where n. m E Z. As m and n can assume any integer value then we must assume that these 
points exist in a uniform grid over the whole of the system's phase space. 

Now that we have established this grid of points we need to consider whether these 
fixed points are hyperbolic or elliptic. The reason for this consideration is to determine 
in which regions of the phase space the unstable directions of the hyperbolic points exist 
as these determine the unbounded, diffuse behaviour evident in the system. To determine 
whether a periodic fixed point is elliptic or hyperbolic it is necessary to find its eigenvalues 
as given by the equation 

647) 

where, in this 2D mapping, A is a 2D vector containing the eigenvalues, (AI, Az), J is the 
Jacobian of the nth return map (where n is the periodicity of the fixed point) and is a (2 x 2) 
matrix with I the (2 x 2) identity matrix. 

The eigenvalues of an elliptical point form a complex conjugate pair such that the matrix 
M, containing the eigenvalue solutions of (A7) for this specific fixed point, is a rotation 
matrix about the point itself. For a hyperbolic point its eigenvalues are not complex but 
real with the ratio between them such that their product is 1. In order for this condition to 
be satisfied, one eigenvalue must be greater than 1 with the other less than 1. Whichever 
eigenvalue is greater than 1 describes the unstable direction whereas the eigenvalue less 
than 1 describes the stable direction. To obtain these directions and to determine which 
points are hyperbolic we require the eigenvalue equation for the period-four fixed points of 
the system. To proceed further it is necessary to substitute, from (A6), the values of the 
period-four fixed points in order to eliminate the sin terms in the expressions for the 4RM. 
This substitution makes for a much simpler set of equations~than those in (Al) and (A2). 
The Jacobian's elements, Jjj where 1 < i, j ,  < 2, can be found to be 

IJ - All  = 0 
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The eigenvalue equation given previously, in (A7), now boils down to 

M V Daly and D M Heffeman 

(1 - A - 4K2@~l(-1)"+")(1 - A  - 12K2p~~(-l)m+" + 16K4~~1(-1)2G+") 

- (4Kp~d (- 1)" - 8K3/*21 (- 1)"+'") ( 4 K p c l  (- I)"' + 8 K3p: (- 1)"'") 
= 0 .  (A% 

This equation is solved on a computer using the formula for obtaining the roots of a quadratic 
equation to give the eigenvalues A+ and A- for any period-four fixed point (5ma, 5nn) at 
specified values of pCl and K .  Remember that B is now fixed at n/2. It has been seen 
from results obtained numerically that for pSl > 0 the period-four fixed points with n + m 
odd are hyperbolic with unstable and stable directions given by A+ and A-, respectively. 

Furthermore, for two adjacent period-four hyperbolic points A and B ,  with A = 
(5mn.5nn) and E = (5(m + l)n,5(n + lfn), the terms Jzl and J z  for A are equal 
to -Jzl and - J z ,  respectively for B. The result of this is to cause the unstable direction 
of A ,  given by A!. to coincide with the stable direction of B,  given by A:, and vice versa. 
This identity allows orbits to spread out over the en&e phase space. 
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